CONVERSION OF BROMO COMPOUNDS TO CHLORO COMPOUNDS

Julius A. Vida

KENDALL Company, Theodore Clark Laboratory

Cambridge, Massachusetts 02142

(Received in USA 30 June 1970; received in UK for publication 21 July 1970)

Several methods are known for the conversion of chloro-compounds to bromo-compounds and bromo-compounds to iodo-compounds. Only a few examples are known for the reverse procedure, i.e. conversion of bromo-compounds to chloro-compounds.

It has now been found that transhalogenation of bromo derivatives takes place readily using silver difluorochloroacetate. To a solution of 1,3-bis-(bromomethyl)-5-ethyl-5-phenyl-barbituric acid (I), mp 160-161.5°, (Analysis: calculated for $C_{14}H_{14}O_3N_2Br_2$: C, 40.22; H, 3.37; N, 6.70; Br, 38.23. Found: C, 39.99; H, 3.23; N, 6.80; Br, 38.51.) in acetonitrile, silver difluorochloroacetate (two equivalents) was added, and the mixture was heated at reflux overnight. The precipitated silver salt was removed by filtration, and the solvent evaporated to yield a solid product. Crystallization from ethanol afforded pure 1,3-bis(chloromethyl)-5-ethyl-5-phenyl-barbituric acid (II), mp 154-156° in 70% yield. Analysis: calculated for $C_{14}H_{14}O_3N_2Cl_2$: C, 51.08; H, 4.29; N, 8.51; C1, 21.54. Found: C, 51.17; H, 4.34; N, 8.50; C1, 21.67.

In the other examples, which are summarized in the accompanying table, purification was achieved by column chromatography using E. Merck 70-325 mesh ASTM silica gel. Elution was carried out with benzene-ethyl acetate solvent mixtures. All starting materials and products were subjected to microanalyses and the val-

3448 No.39

ues were within $\pm 0.3\%$ of the theoretical values. All products gave satisfactory infrared spectra and TLC values which were identical to those of the corresponding authentic samples. (1-Chloroadamantane and N-(2-chloroethyl)-phthalimide samples were not available.)

Compound	Solvent	Reaction Temperature	Reaction Time (Hours)	% Yield of Chloro-Compound
N-CH ₂ CH ₂ Br	diglyme	150°	140	92
	снзси	81°	16	70
сн ₃ (сн ₂)6сн ₂ вг	glyme	124 ⁰	78	89
CHCH ₃	glyme	124 ⁰	16	95
Br	glyme	124°	24	85

REFERENCES

- 1. Houben-Weyl, Methoden der Organische Chemie, Vol. 5/4, p. 354, G. Thieme Verlag, Stuttgart, (1962).
- 2. ibid., p. 595.
- 3. ibid., p. 749.
- 4. Supplied by K & K Laboratories, Inc., Plainview, New York.
- 5. J. A. Vida, W. R. Wilber and J. F. Reinhard, <u>J. Med. Chem.</u>, (submitted for publication).
- Analyses by Galbraith Laboratories, Knoxville, Tenn. and S. M. Nagy Microchemical Laboratory, Belmont, Mass.